

Spatial dependence, contextual factors and pricing behaviour of gas stations: evidence from the city of Rome.

Angela S. Bergantino, Claudia Capozza, Mario Intini Università degli Studi di Bari «Aldo Moro»

SIET, Milan, June 20-22, 2018

Introduction & Motivation

- This work aims at empirically exploring the nature of price variation in the retail gasoline market
 - ✓ suitable for the investigation of the spatial price competition (product homogeneity)
 - ✓ contextual factors shape the price fixing behaviour of gasoline stations?
- The empirical analysis is focused on the city of Rome, showing a great deal of heterogeneity across sub-municipal areas.
 - ✓ We employ variables at sub-municipal level accounting for micro-territorial differences.

Outline

- Literature review
- Italian gasoline sector
- Empirical setting: Rome municipalities
- Data collection and variables
- Empirical strategy
- Results
- Concluding remarks

Literature Review

The discussion about the factors expected to play a significant role are grouped by the following categories:

- 1. market competition
- 2. spatial dependence in price
- 3. contextual factors

Literature Review: market competition (1)

Different measures of market competition have adopted in the literature

- Clemenz and Gugler (2006) find a negative association between station density and the average price charged by all gasoline stations within a district in the Austrian retail gasoline market.
- Van Meerbeek (2003), focusing on Belgian gasoline stations, shows that, as long as the *number of competitors* in a given municipality increases, the gasoline prices of competitors in that municipality decrease.
- Pennerstorfer (2009) and Pennerstorfer and Weiss (2013), find a positive relationship between density (number of stations per inhabitants at district-level) and prices of gasoline stations in Austria, because a lower demand per station increases the price.

Literature Review: market competition (2)

- Some contributions also consider local concentration indexes, i.e. the Concentration Ratio (CR_n) and Herfindahl-Hirschman Index (HHI)
 - Sen (2003) and Eckert and West (2004) shows that, in the Canadian market, the local market concentration is significantly associated with higher retail price.
 - Kihm et al. (2016), exploring the German retail gasoline market, find that a higher HHI increases the ability of that station to set higher prices.
 - However, Clemenz and Gugler (2006) find that market concentration, measured by the CR₁, CR₄ and HHI, does not significantly affect average price.

Literature Review: spatial competition

- Ning and Haining (2003) show a positive relationship between the observed station's price and the average price of stations in the same local cluster.
- Pennerstorfer (2009) and Pennerstorfer and Weiss (2013) find that gasoline stations' prices are spatially correlated: the price of the closest neighbour influences a given station's pricing behaviour.
- Hogg et al. (2012), focusing on the South-Eastern Queensland market, prove that neighbouring stations experience unobserved shocks in a very similar way (i.e. spatial propagation of prices).
- Firgo et al. (2015) in the Austrian market, prove that both spatial proximity and centrality of stations explain the spatial correlation of prices.
- Alderighi et al. (2015), on an Italian market (Cuneo), find a weak but significant spatial dependence (diesel price is more reactive than gasoline price).

Literature Review: contextual factors

- The novelty of this study is to understand whether the **submunicipal context** affects gasoline prices
 - to date, this issue has been less regarded.
- Most of the studies account for the *population*
 - Kihm et al. (2016) Clemenz and Gugler (2006) and Pennerstorfer (2009) show a positive relation with the price dependent variable.
- Pennerstorfer and Weiss (2013) show a negative relationship between density population and the share of tourists with gasoline prices
- Alderighi and Baudino (2015), include the number of workers near gas stations. They find a positive effect of labour on prices (shift in demand induces a rise of the prices).

Italian gasoline sector

- A few and big vertically integrated companies
 - ✓ 8 big companies holding about 95% of the Italian retail fuel market
- Most of the branded stations are company-owned while few are operated by independent retailer
 - ✓ a few presence of «white pumps»
- Abundance of gas stations
- The price is designed as follows (Andreoli-Versbach, 2011)
 - 1. the **companies suggest a price to the stations' manager** which is not binding and not necessarily corresponding to the final price for consumers
 - 2. the **owner** of the station receives a discount on the suggested price and may decide to increase the suggested price by a certain percentage
 - 3. the service station **manager can set a price** ranging from a minimum equal to its purchase price to a maximum established by the company.

Empirical setting: Rome municipalities

- Municipalities of Rome represent the administrative subdivision of the territory of Rome. In total, there are fifteen municipalities including:
 - 22 wards (*rioni*) that make up the historic centre, all included within the Aurelian Walls
 - 35 districts surrounding the historic centre outside the Aurelian Walls
 - 6 suburbs, territories beyond the district
 - 53 sparsely populated areas called the Agro Romano.

Data and variables

• Station-level data of Rome city in 2016 are collected from the «Osservatorio Prezzi Carburanti» provided by the Italian Ministry of the Economic Development.

Dependent variable

- **Price**: average yearly price, computed using the daily prices charged by each gas station over the observed year
 - gasoline and diesel prices of self-market

Explanatory variables

- **HHI**, i.e. $\sum_{k=1}^{K} s_{i,k}^2$, where *s* is the market share of station *i* in district *k*, calculated as the number of same-brand stations within a district over the total number of stations
- *Motorway*, equal to 1 if the gasoline station is located on a motorway, 0 otherwise (omitted category)
- *Trunk road*, equal to 1 if the gasoline station is located on a trunk road, 0 otherwise
- **Other road**, equal to 1 if the gasoline station is located on other roads, 0 otherwise

Data and variables

Context variables

- Population 20-69: number of inhabitants residing in the municipality divided into the various toponymic areas.
 - *Source*: official statistical section of Municipality of Rome
- Number of commercial businesses active in 2012 for the municipality
 - Source: ISTAT
- **Real estate value** of the buildings in the toponymic areas of the municipality of Rome
 - *Source*: "Agenzia delle Entrate", the minimum and maximum value of the property per semester is made available.

Empirical Strategy (1)

• The form that consider the violation of OLS properties is given by the following equations:

$$y = \lambda W y + X \beta_{(1)} + W X \beta_{(2)} + u \qquad |\lambda| < 1$$
$$u = \rho W u + \varepsilon \qquad |\rho| < 1$$

- **y** is the N × 1 vector of observations on the dependent variable
- X is the N × k matrix of observations on the independent variables
- W and M are N × N spatial-weighting matrices that parameterize the distance between neighborhoods
- **u** are spatially correlated residuals and q are independent and identically distributed disturbances
- λ and ρ are scalars that measure, respectively, the dependence of yi on nearby y and the spatial correlation in the errors.
- Maximum Likelihood estimator used in all estimates

Empirical Strategy (2)

- 1. To define the spatial effects, we need to define the **spatial weights matrix**
 - We use the maximum distance between the various service stations to see how much their prices spread in the city of Rome.
 - We also standardized our matrix to sum unity in each row.
- 2. To test the spatial correlation, among the variables considered, we use the **Moran's test** under the null hypothesis a non-correlation between regression residuals.

Moran's I test under randomisation							
Moran I statistic standard deviate = 5.1743,		p-value = 1.144e-07					
alternative hypothesis: greater							
sample estimates:							
Moran I statistic	Expectation	Variance					
3,66E+04	-1,62E+03	5,45E+01					

Results (1)

Spatial Lag Model Gasoline (self-mode)

Sputiul Lug Model Gusoline (selj-mode)							
	1	2	3	4	5		
нні	4.7218e-06*** (1.4329e-06)	4.8991e-06 *** (1.4457e-06)	3.7827e-06*** (1.4324e-06)	3.9017e-06*** (1.4167e-06)	3.8331e-06*** (1.4514e-06)		
Latitude	4.7218e-06*** (1.4329e-06)	-8.6296e+00 (5.3582e+00)	-1.1489e+01*** (5.3901e+00)	-1.2356e+01** (5.4063e+00)	-1.3550e+01** (0.0130495)		
Longitude	-8.3286e+00 (5.3321e+00)	-2.9103e+01 (1.8033e+01)	-3.8777e+01** (1.8143e+01)	-4.1577e+01** (1.8200e+01)	-4.5660e+01** (1.8378e+01)		
Latitude*Longitude	6.7096e-01 (4.2853e-01)	6.9548e-01 (4.3069e-01)	9.2607e-01*** (4.3329e-01)	9.9402e-01** (4.3467e-01)	1.0912e+00** (4.3894e-01)		
<i>Station types</i> (omitted category: highway)		. ,		, , , , , , , , , , , , , , , , , , ,			
Trunk road	-4.4183e-02** (1.9143e-02)	-4.3367e-02** (1.9156e-02)	-4.7546e-02 (1.8913e-02)	-4.5516e-02** (1.8773e-02)	-4.7672e-02** (1.8784e-02)		
Other road	-4.2974e-02*** (1.3631e-02)	-4.3645e-02*** (1.3626e-02)	-4.9856e-02*** (1.3597e-02)	-5.1157e-02*** (1.3551e-02)	-5.4628e-02*** (1.3591e-02)		
Lagged price (Lambda)	0.47742 **	0.50154**	0.41678**	0.24527	0.25151		
Brand dummies	YES	YES	YES	YES	YES		
Contextual variables							
Population 20 to 69		5.4391e-03 (6.4452e-03)			9.4490e-04 (6.7987e-03)		
Commercial activities			2.3649e-02*** (5.8273e-03)		1.6529e-02** (6.5484e-03)		
Real Estate Value				1.5819e-05*** (3.1821e-06)	4.0491e-02*** (1.1691e-02)		
LR test value	5.5412	6.0591	4.0683	1.2211	1.2422		
Wald statistic	9.6254	11.168	6.4406	1.8189	1.8738		

Results (2)

Spatial Lag Model Diesel (self-mode)

4 5689e-06** 5294e-06) 818e+01** 6986e+00) 8149e+01** 9185e+01)	5 3.5977e-06** (1.5684e-06) -1.3830e+01** (5.7680e+00) -4.6608e+01**
.5294e-06) 2818e+01** 6986e+00) 3149e+01**	(1.5684e-06) -1.3830e+01** (5.7680e+00) -4.6608e+01**
6986e+00) 3149e+01**	(5.7680e+00) -4.6608e+01**
	(1.9421e+01)
)316e+00** .5819e-01)	1.1139e+00** (4.6385e-01)
1467e-02** .9875e-02)	-4.3766e-02*** (1.9927e-02)
834e-02*** 4355e-02)	-4.8749e-02*** (1.4426e-02)
0.33388	0.33041
YES	YES
	-1.2953e-03 (7.2140e-03)
	1.5036e-02** (6.9673e-03)
296e-05*** 3.3837e-06)	4.2824e-02*** (1.2438e-02)
2.5857	2,4434
3.8956	3.6741
	.5819e-01) .467e-02** 9875e-02) 834e-02*** 4355e-02) 0.33388 YES 296e-05*** 3.3837e-06) 2.5857

Results (3)

Spatial Error Model Gasoline (self-mode)

	Spatial Lifer Would Gusenine (self moue)							
2	3	4	5					
			3.6681e-06** (1.4433e-06)					
			-1.5487e+01** (6.7937e+00)					
			-5.2234e+01** (2.2839e+01)					
			1.2485e+00** (5.4541e-01)					
2e-02) (1.9106	e-02) (1.8952e-02		-4.7268e-02** (1.8760e-02)					
e-02*** -4.5933e- e-02) (1.3560			-5.5483e-02*** (1.3484e-02)					
	e-02) (1.3546e-02) (1.3449e-02)						
e-02) (1.3560	e-02) (1.3546e-02 2*** 0.39051**) (1.3449e-02)	(1.3484e-02)					
e-02) (1.3560 4** 0.5463 2	e-02) (1.3546e-02 2*** 0.39051**) (1.3449e-02) 0.37419 *	(1.3484e-02) 0.36604					
e-02) (1.3560 4** 0.5463 2	e-02) (1.3546e-02 2*** 0.39051** 5 YES e-03) (1.3449e-02) 0.37419 *	(1.3484e-02) 0.36604					
9e-02) (1.3560 4** 0.5463 S YES 6.7414	e-02) (1.3546e-02 2*** 0.39051** 5 YES e-03) (1.3449e-02) 0.37419* YES	(1.3484e-02) 0.36604 YES 3.2681e-03					
9e-02) (1.3560 4** 0.5463 S YES 6.7414	e-02) (1.3546e-02 2*** 0.39051** 5 YES e-03 e-03) 2.2941e-02**) (1.3449e-02) 0.37419* YES	(1.3484e-02) 0.36604 YES 3.2681e-03 (7.0590e-03) 1.4373e-02**					
9e-02) (1.3560 4** 0.5463 S YES 6.7414	e-02) (1.3546e-02 2*** 0.39051** S YES e-03 e-03) 2.2941e-02** (5.9221e-03)) (1.3449e-02) 0.37419* YES ***) 1.7788e-05***	(1.3484e-02) 0.36604 YES 3.2681e-03 (7.0590e-03) 1.4373e-02** (6.5592e-03) 4.9627e-02***					
	2e-06) (1.4359 3e+01 -1.2540 2e+00) (8.4376) 4e+01 -4.2360 2e+01) (2.8347) 4e-01 1.0123 3e-01) (6.7695)	$2e-06$) $(1.4359e-06)$ $(1.4396e-06)$ $3e+01$ $-1.2540e+01$ $-1.6059e+01^{2}$ $2e+00$) $(8.4376e+00)$ $(7.0175e+00)$ $4e+01$ $-4.2360e+01$ $-5.4234e+01^{2}$ $2e+01$) $(2.8347e+01)$ $(2.3588e+01)^{2}$ $4e-01$ $1.0123e+00$ $1.2954e+00^{2}$ $3e-01$) $(6.7695e-01)$ $(5.6328e-01)^{2}$ $e-02^{**}$ $-4.1519e-02^{**}$ $-4.5519e-02^{*}$	$2e-06$) $(1.4359e-06)$ $(1.4396e-06)$ $(1.4171e-06)$ $3e+01$ $-1.2540e+01$ $-1.6059e+01^{**}$ $-1.3941e+01^{**}$ $2e+00$) $(8.4376e+00)$ $(7.0175e+00)$ $(6.8078e+00)$ $4e+01$ $-4.2360e+01$ $-5.4234e+01^{**}$ $-4.6972e+01^{**}$ $2e+01$) $(2.8347e+01)$ $(2.3588e+01)$ $(2.2882e+01)$ $4e-01$ $1.0123e+00$ $1.2954e+00^{**}$ $1.1230e+00^{**}$ $8e-01$) $(6.7695e-01)$ $(5.6328e-01)$ $(5.4645e-01)$					

Conclusions

- We found evidence of spatial competition among different companies in the city of Rome.
- The most important aspect concerns the use of **context variables** as regressors to explain price behaviour of service stations.
- *Rho* and *Lambda* coefficients are significant and explain how spatial price propagation works in this area.
- Interestingly, the variable for the real estate value plays a very important role because when included in the model,

the *rho* coefficient <u>is no longer significant</u>:

- prices seem to be correlated with each other in space, but this correlation is weakly due to spatial propagation of prices
- rather, it is determined by the fact that stations operating in neighbourhoods with higher property values tend to set higher prices.

Thank you for your attention!